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A REALITY CHECK FOR DATA SNOOPING

BY HALBERT WHITE1

Data snooping occurs when a given set of data is used more than once for purposes of
inference or model selection. When such data reuse occurs, there is always the possibility
that any satisfactory results obtained may simply be due to chance rather than to any
merit inherent in the method yielding the results. This problem is practically unavoidable
in the analysis of time-series data, as typically only a single history measuring a given
phenomenon of interest is available for analysis. It is widely acknowledged by empirical
researchers that data snooping is a dangerous practice to be avoided, but in fact it is
endemic. The main problem has been a lack of sufficiently simple practical methods
capable of assessing the potential dangers of data snooping in a given situation. Our
purpose here is to provide such methods by specifying a straightforward procedure for
testing the null hypothesis that the best model encountered in a specification search has
no predictive superiority over a given benchmark model. This permits data snooping to be
undertaken with some degree of confidence that one will not mistake results that could
have been generated by chance for genuinely good results.

KEYWORDS: Data mining, multiple hypothesis testing, bootstrap, forecast evaluation,
model selection, prediction.

1. INTRODUCTION

WHENEVER A ‘‘GOOD’’ FORECASTING MODEL is obtained by an extensive specifi-
cation search, there is always the danger that the observed good performance
results not from actual forecasting ability, but is instead just luck. Even when no
exploitable forecasting relation exists, looking long enough and hard enough at a
given set of data will often reveal one or more forecasting models that look
good, but are in fact useless.

This is analogous to the fact that if one sequentially flips a sufficiently large
number of coins, a coin that always comes up heads can emerge with high
likelihood. More colorfully, it is like running the newsletter scam: One selects a
large number of individuals to receive a free copy of a stock market newsletter;
to half the group one predicts the market will go up next week; to the other, that
the market will go down. The next week, one sends the free newsletter only to
those who received the correct prediction; again, half are told the market will go
up and half down. The process is repeated ad libitum. After several months

1 The author is grateful to the editor, three anonymous referees, Paul Churchland, Frank
Diebold, Dimitris Politis, Ryan Sullivan, and Joseph Yukich for helpful comments, and to Douglas
Stone of Nicholas Applegate Capital Management for helping to focus my attention on this topic.
All errors are the author’s responsibility. Support for this research was provided by NeuralNet R&D
Associates and QuantMetrics R&D Associates, LLC. Computer implementations of the methods
described in this paper are covered by U.S. Patent 5,893,069.
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there can still be a rather large group who have received perfect predictions, and
who might pay for such ‘‘good’’ forecasts.

Also problematic is the mutual fund or investment advisory service that
includes past performance information as part of their solicitation. Is the past
performance the result of skill or luck?

These are all examples of ‘‘data snooping.’’ Concern with this issue has a
noble history. In a remarkable paper appearing in the first volume of Economet-

Ž .rica, Cowles 1933 used simulations to study whether investment advisory
services performed better than chance, relative to the market. More recently,
resulting biases and associated ill effects from data snooping were brought to
the attention of a wide audience and well documented by Lo and MacKinley
Ž .1990 . Because of these difficulties, it is widely acknowledged that data snoop-
ing is a dangerous practice to be avoided; but researchers still routinely data
snoop. There is often no other choice for the analysis of time-series data, as
typically only a single history for a given phenomenon of interest is available.

Data snooping is also known as data mining. Although data mining has
recently acquired positive connotations as a means of extracting valuable rela-
tionships from masses of data, the negative connotations arising from the ease
with which naive practitioners may mistake the spurious for the substantive are

Ž .more familiar to econometricians and statisticians. Leamer 1978, 1983 has
been a leader in pointing out these dangers, proposing methods for evaluating
the fragility of the relationships obtained by data mining. Other relevant work is

Ž . Ž . Ž . Ž . Ž .that of Mayer 1980 , Miller 1981 , Cox 1982 , Lovell 1983 , Potscher 1991 ,¨
Ž . Ž . Ž .Dufour, Ghysels, and Hall 1994 , Chatfield 1995 , Kabaila 1995 , and Hoover

Ž .and Perez 1998 . Each examines issues of model selection in the context of
specification searches, with specific attention to issues of inference. Recently,
computer scientists have become concerned with the potential adverse effects of
data mining. An informative consideration of problems of model selection and

Ž .inference from this perspective is that of Jensen and Cohen 2000 .
Nevertheless, none of these studies provides a rigorously founded, generally

applicable method for testing the null hypothesis that the best model encoun-
tered during a specification search has no predictive superiority over a bench-
mark model. The purpose of this paper is to provide just such a method. This
permits data snooping�mining to be undertaken with some degree of confidence
that one will not mistake results that could have been generated by chance for
genuinely good results.

Our null hypothesis is formulated as a multiple hypothesis, the intersection of
l one-sided hypotheses, where l is the number of models considered. As such,
bounds on the p-value for tests of the null can be constructed using the

Ž Ž ..Bonferroni inequality e.g. Savin 1980 and its improvements via the union-
Ž Ž .. Ž Ž .intersection principle Roy 1953 or other methods e.g. Hochberg 1988 ,

Ž ..Hommel 1989 . Resampling-based methods for implementing such tests are
Ž . Ž .treated by Westfall and Young 1993 . Nevertheless, as Hand 1998, p. 115

� �points out, ‘‘these multiple comparison approaches were not designed for the
sheer numbers of candidate patterns generated by data mining. This is an area
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that would benefit from some careful thought.’’ Thus, our goal is a method that
does not rely on such bounds, but that directly delivers, at least asymptotically,
appropriate p-values.

In taking this approach, we seek to control the simultaneous rate of error
under the null hypothesis. As pointed out by a referee, one may alternatively

Žwish to control the average rate of error i.e., the frequency at which we find
. Ž‘‘better’’ models . Which is preferred can be a matter of taste; Miller 1981,

.Chapter 1 provides further discussion. Because our interest here focuses on
selecting and using an apparently best model, rather than just asking whether or
not a model better than the benchmark may exist, we adopt the more stringent
approach of controlling the simultaneous rate of error. Nevertheless, the results
presented here are also relevant for controlling average error rates, if this is
desired.

2. THEORY

2.a The Basic Framework

Ž . Ž .We build on recent work of Diebold and Mariano 1995 and West 1996
regarding testing hypotheses about predictive ability. Our usage and notation
will be similar.

Predictions are to be made for n periods, indexed from R through T , so that
T�R�n�1. The predictions are made for a given forecast horizon, � . The

ˆfirst forecast is based on the estimator � , formed using observations 1 throughR
ˆR, the next based on the estimator � , and so forth, with the final forecastR�1

ˆbased on the estimator � .T
Ž .We test a hypothesis about an l�1 vector of moments, E f * , where

Ž . � Ž .f *� f Z, � * is an l�1 vector with elements f � f Z, � * , for a randomk k
ˆvector Z and parameters � *�plim � . Typically, Z will consist of vectors ofT

dependent variables, say Y, and predictor variables, say X. Our test is based on
the l�1 statistic

T
�1 ˆf�n f ,Ý t��

t�R

ˆ ˆŽ . � 4where f � f Z , � , and the observed data are generated by Z , a station-t�� t�� t t
Ž .ary strong �- mixing sequence having marginal distributions identical to that of

Z, with the predictor variables of Z available at time t. For suitable choice oft��

f , the condition

Ž .H : E f * �0o

will express the null hypothesis of no predictive superiority over a benchmark
model.

Ž .Although we follow West 1996 in formulating our hypotheses in terms of
� *, it is not obvious that � * is necessarily the most relevant parameter value for
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ˆfinite samples, as a referee points out. Instead, the estimators � are thet
parameter values directly relevant for constructing forecasts, so alternative
approaches worth consideration would be, for example, to test the hypothesis

Ž . Ž . Žthat lim E f � 0, that lim E f � Z , . . . , Z � 0, or that E f �n�� n�� 1 R t��

.Z , . . . , Z �0. We leave these possibilities to subsequent research.1 t
Some examples will illustrate leading cases of interest. For simplicity, set

��1. For now, take l�1.

Example 2.1: To test whether a particular set of variables has predictive power
Ž .superior to that of some benchmark regression model in terms of negative

mean squared error, take

2 2� �ˆ ˆ ˆf �� y �X � � y �X � ,Ž . Ž .t�1 t�1 1, t�1 1, t t�1 0, t�1 0, t

ˆwhere y is a scalar dependent variable, � is the OLS estimator based ont�1 1, t
ˆ�Ž . 4 Ž .y , X , s�1, . . . , t using regressors X , and � is the OLS estimators 1, s 1 0, t

ˆ�Ž . 4based on y , X , s�1, . . . , t , using benchmark regressors X . Here � �s 0, s 0 t
ˆ� ˆ�Ž .� , � �. Note that the regression models need not be nested.0, t 1, t

Example 2.2: To test whether a financial market trading strategy yields returns
superior to a benchmark strategy take

ˆ � �� Ž .� � Ž .�f � log 1�y S X , � � log 1�y S X , � .t�1 t�1 1 1, t�1 1 t�1 0 0, t�1 0

Here y represents per period returns and S and S are ‘‘signal’’ functionst�1 0 1
Ž . Ž � � .that convert indicators X and X and given parameters � and �0, t�1 1, t�1 0 1

into market positions. The signal functions are step functions, with three
Ž . Ž . Ž .permissible values: 1 long , 0 neutral , and �1 short . As is common in

Ž Ž ..examining trading strategies e.g., Brock, Lakonishok, and LeBaron 1992 , the
parameters of the systems are set a priori and do not require estimation. We are

Ž .thus in Diebold and Mariano’s 1995 framework. It is plausible that estimated
parameters can be accommodated in the presence of step functions or other
discontinuities, but we leave such cases aside here. The first log term represents
returns from strategy one, while the second represents returns from the bench-
mark strategy. An important special case is S �1, the buy and hold strategy.0

Example 2.3: To test generally whether a given model is superior to a
benchmark, take

ˆ ˆ ˆf � log L y , X , � � log L y , X , � ,Ž . Ž .t�1 1 t�1 1, t�1 1, t 0 t�1 0, t�1 0, t

ˆŽ .where log L y , X , � is the predictive log-likelihood for predictivek t�1 k , t�1 k , t
ˆŽ .model k, based on the quasi-maximum likelihood estimator QMLE � ,k , t

k�0, 1. The first example is a special case.

Ž .Not only do we have E f * �0 under the null of no predictive superiority, but
the moment function also serves as a model selection criterion. Thus we can
search over l	1 specifications by assigning one moment condition�model
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selection criterion to each model. To illustrate, for the third example the l�1
ˆvector f now has componentst�1

ˆ ˆ ˆf � log L y , X , � � log L y , X , �Ž . Ž .k , t�1 k t�1 k , t�1 k , t 0 t�1 0, t�1 0, t

Ž .k�1, . . . , l .

We select the model with the best model selection criterion value, so the
appropriate null is that the best model is no better than the benchmark.
Formally,

Ž � .H : max E f �0.o k�1, . . . , l k

The alternative is that the best model is superior to the benchmark.
A complexity penalty to enforce model parsimony is easily incorporated; for

example, to apply the Akaike Information Criterion, subtract p �p from thek 0
ˆ Ž .above expression for f , where p p is the number of parameters in thek , t�1 k 0

Ž . Ž .k th 0th model. We thus select the model with the best penalized predictive
log-likelihood.

The null hypothesis H is a multiple hypothesis, the intersection of theo
Ž � .one-sided individual hypotheses E f �0, k�1, . . . , l. As discussed in thek

introduction, our goal is a method that does not rely on bounds, such as
Bonferroni or its improvements, but that directly delivers, at least asymptoti-
cally, appropriate p-values.

2.b Basic Theory

We can provide such a method whenever f , appropriately standardized, has a
Ž .continuous limiting distribution. West’s 1996 Main Theorem 4.1 gives conve-

Ž .nient regularity conditions reproduced in the Appendix as Assumption A
which ensure that

1�2 Ž Ž .. Ž .n f�E f * �N 0, � ,

Ž .where � denotes convergence in distribution as T��, and � l� l is

T
�1�2 Ž .�� lim var n f Z , � * ,ÝT �� t��

t�R

�Ž . Ž .�provided that either F�E ���� f Z, � * �0 or n�R�0 as T��. When
Ž .neither of these conditions holds, West’s Theorem 4.1 b establishes the same

conclusion, but with a more complex expression for � . For Examples 2.1 and
2.3, F�0 is readily verified. In Example 2.2, there are no estimated parameters,
so F plays no role.

�1ˆFrom this, West obtains standard asymptotic chi-squared statistics nf �� f
ˆŽ .for testing the null hypothesis E f * �0, where � is a consistent estimator for

Ž .� . In sharp contrast, our interest in the null hypothesis E f * �0 leads
Ž .naturally to tests based on max f . Methods applicable to testing E f *k�1, . . . , l k
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�0 follow straightforwardly from our results; nevertheless, for succinctness we
Ž .focus here strictly on testing E f * �0.

Our first result establishes that selecting the model with the best predictive
model selection criterion does indeed identify the best model when there is one.

1�2Ž Ž .. Ž .PROPOSITION 2.1: Suppose that n f�E f * �N 0, � for � positi
e
Ž . Ž . Ž � .semi-definite e. g. Assumption A of the Appendix holds . a If E f �0 fork

�Ž . � � Ž .some 1�k� l, then for any 0�c�E f , P f �c �1 as T��. b If l�1k k
� �Ž . Ž . � �and E f �E f , for all k�2, . . . , l, then P f � f for all k�2, . . . , l �1 as1 k 1 k

T��.

Ž . Ž .Part a says that if some model e.g., the best model beats the benchmark,
then this is eventually revealed by a positive estimated relative performance.
When l�1, this result is analogous to a model selection result of Rivers and

Ž .Vuong 1991 , for a nonpredictive setting. It is also analogous to a model
Ž .selection result of Kloek 1972 for l	1, again in a nonpredictive setting. Part

Ž .b says that the best model eventually has the best estimated performance
relative to the benchmark, with probability approaching one.

A test of H for the predictive model selection criterion follows from theo
following proposition.

1�2Ž Ž .. Ž .PROPOSITION 2.2: Suppose that n f�E f * �N 0, � for � positi
e
Ž .semi-definite e. g. Assumption A holds . Then as T��

�1�2 Ž . � 4max n f �E f �V �max ZZ� 4k�1, . . . , l k k l k�1, . . . , l k

and
�1�2 Ž . � 4min n f �E f �W �min ZZ ,� 4k�1, . . . , l k k l k�1, . . . , l k

where ZZ is an l�1 
ector with components ZZ , k�1, . . . , l, distributed ask
Ž .N 0, � .

Given asymptotic normality, the conclusion holds regardless of whether the
null or the alternative is true. We enforce the null for testing by using the fact

Ž � .that the element of the null least favorable to the alternative is that E f �0k
for all k. The behavior of the predictive model selection criterion for the best
model, say

1�2V �max n f ,l k�1, . . . , l k

is thus known under the element of the null least favorable to the alternative,
approximately, for large T , permitting construction of asymptotic p-values. By
enforcing the null hypothesis in this way, we obtain the critical value for the test

Ž � .in a manner akin to inverting a confidence interval for max E f . Any methodk k
Ž . Ž .for obtaining a consistent estimate of a p-value for H : E f * �0 in theo

context of a specification search we call a ‘‘Reality Check,’’ as this provides an
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objective measure of the extent to which apparently good results accord with the
sampling variation relevant for the search.

The challenge to implementing the Reality Check is that the desired distribu-
tion, that of the extreme value of a vector of correlated normals for the general
case, is not known. An analytic approach to the Reality Check is not feasible.

Nevertheless, there are at least two ways to obtain the desired p-values. The
first is Monte Carlo simulation. For this, compute a consistent estimator of � ,

ˆsay � . For example, one can use the block resampling estimator of Politis and
Ž .Romano 1994a or the block subsampling estimator of Politis and Romano

ˆŽ . Ž .1994c . Then one samples a large number of times from N 0, � and obtains
ˆŽ .the desired p-value from the distribution of the extremes of N 0, � . We call

this the ‘‘Monte Carlo Reality Check’’ p-value.
To appreciate the computations needed for the Monte Carlo approach,

Ž .consider the addition of one more model say model l to the existing collection.
ˆ ˆFirst, we compute the new elements of the estimate � , its lth row, � �l

ˆ ˆ ˆŽ . �� , . . . , � . For concreteness, suppose we manipulate f , k�1, . . . , l;l1 l l k , t��

�t�1, . . . , T to obtain
T

ˆ Ž . Ž .� �	 � w 	 �	 k�1, . . . , l ,ˆ ˆ ˆÝlk lk 0 T s k l s lk s
s�1

Žwhere w , s � 1, . . . , T are suitable weights and 	 � T �ˆT s k l s
�1 T ˆ ˆ.s Ý f f .t�s�1 k , t�� l, t���s

ˆŽ .Next, we draw independent l�1 random variables ZZ �N 0, � , i�1, . . . , N.i
ˆ ˆ ˆˆ ˆŽ .For this, compute the Cholesky decomposition of � , say C so CC��� , and

ˆ l l Ž Ž ..form ZZ �C
 , where 
 is l-variate standard normal N 0, I . Finally, com-i i i l
pute the Monte Carlo Reality Check p-value from the order statistics of

Ž .� �max ZZ where ZZ � ZZ , . . . , ZZ �.i, l k�1, . . . , l i, k i i1 i l
The computational demands of constructing � can be reduced by notingi, l

ˆ ˆthat C is a triangular matrix whose lth row depends only on � and thel
ˆ ˆ ˆ l�Ž .preceding l�1 rows of C. Thus, by storing � , C, and 
 , � , i�1, . . . , N, atl i i, l

Ž .each stage l�1, 2, . . . , one can construct � at the next stage as � �i, l i, l
ˆ l ˆ ˆ lŽ . Ž .max � , C 
 , where C is the l�1 lth row of C, and 
 is formedi, l�1 l i l i

l Ž l�1� . Ž .recursively as 
 � 
 , 
 �, with 
 independently drawn as scalar uniti i i, l i, l
normal.

To summarize, obtaining the Monte Carlo Reality Check p-value requires
ˆ ˆ ˆ l�� � Ž .storage and manipulation of f , � , C, and 
 , � , i�1, . . . , N. Thesek , t�� l i i, l

storage and manipulation requirements increase with the square of l. Also, if
ˆ� �one is to account for the data-snooping efforts of others, their f matrix isk , t��

required.
A second approach relies on the bootstrap, using a resampled version of f to

deliver the ‘‘Bootstrap Reality Check’’ p-value for testing H . For suitablyo
Ž .chosen random indexes � t , the resampled statistic is computed as

T
� ��1 ˆ ˆ ˆ Ž .f *�n f , f � f Z , � t�R , . . . , T .Ý ž /t�� t�� � Ž t .�� � Ž t .

t�R
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To handle time-series data, we require a resampling procedure applicable to
Ž .dependent processes. The moving blocks method of Kuensch 1989 and Liu and

Ž .Singh 1992 is one such procedure. It works by constructing a resample from
fixed length blocks of observations where the starting index for each block is
drawn randomly. A block length of one gives the standard bootstrap, whereas
larger block lengths accommodate increasing dependence. A more sophisticated
version of this approach is the tapered block bootstrap of Paparoditis and Politis
Ž .2000 . Although any of these methods can be validly applied, for analytic
simplicity and concreteness we apply and analyze the stationary bootstrap of

Ž . Ž .Politis and Romano 1994a,b henceforth, P&R . This procedure is analogous
Žto the moving blocks bootstrap, but, instead of using blocks of fixed length b,

.say one uses blocks of random length, distributed according to the geometric
distribution with mean block length b. As P&R show, this procedure delivers
valid bootstrap approximations for means of �-mixing processes, provided b
increases appropriately with n.

To implement the stationary bootstrap, P&R propose the following algorithm
Ž .for obtaining the � t ’s. Start by selecting a smoothing parameter q�1�b�q ,n

Ž .0�q �1, q �0, n q �� as n��, and proceed as follows: i Set t�R.n n n
Ž . � 4 Ž .Draw � R at random, independently and uniformly from R, . . . , T . ii Incre-

ment t. If t�T , stop. Otherwise, draw a standard uniform random variable U
Ž � �. Ž .supported on 0, 1 independently of all other random variables. a If U�q,

Ž . � 4 Ž .draw � t at random, independently and uniformly from R, . . . , T ; b if U	q,
Ž . Ž . Ž . Ž . Ž . Ž .set � t �� t�1 �1; if � t �T , reset to � t �R. iii Repeat ii . As P&R

show, this delivers blocks of random length, distributed according to the geomet-
ric distribution with mean block length 1�q.

ˆWhen � * appears instead of � in the definition of f *, as it does in� Ž t .
Ž . Ž .Diebold and Mariano’s 1995 setup, P&R’s 1994a Theorem 2 applies immedi-

Žately to establish that under appropriate conditions see Assumption B of the
1�2. � 4 Ž .Appendix , the distribution, conditional on Z , . . . , Z , of n f *� fR�� T��

1�2Ž Ž ..converges, as n increases, to that of n f�E f * .
1�2Ž .Thus, by repeatedly drawing realizations of n f *� f , we can build up an

Ž .estimate of the desired distribution N 0, � . The Bootstrap Reality Check
p-value for the predictive model selection statistic, V , can then immediately bel
obtained from the quantiles of

� �1�2V �max n f � f .Ž .l k�1, . . . , l k k

ˆWhen � appears in f *, careful argument under mild additional regularity� Ž t .
ˆconditions delivers the same conclusion. It suffices that � obeys a law of theT

iterated logarithm, a refinement of the central limit theorem. With mild addi-
Ž Ž . Ž ..tional regularity see Sin and White 1996 or Altissimo and Corradi 1996 one

can readily verify the following.

ASSUMPTION C: Let B and H be as defined in Assumption A.2 of the Appendix,
� Ž 1�2 Ž ..� Ž .and let G�B lim var T H t B�. For all 
 k�1 , 
�
�1,T ��

1�21�2 ˆ� � � Ž . 4P lim sup T 
� � �� * � 
�G
 log log 
�G
 T �1 �1.Ž .T T
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Our main result can now be stated as follows:

Ž .THEOREM 2.3: Suppose either: i Assumptions A and B hold and there are no
Ž . Ž .estimated parameters; or ii Assumptions A�C hold, and either: a F�0 and

�	 Ž 	�� .q �cn for constants c�0, 0�	�1 such that n �R log log R�0 asn
Ž . Ž .T�� for some ��0; or b n�R log log R�0 as T��. Then for f * computed

using P&R’s stationary bootstrap,

p
1�2 1�2� Ž Ž ..�� L n f *� f �Z , . . . , Z , L n f�E f * � 0,Ž .ž /1 T��

� �as T��, where � is any metric metrizing con
ergence in distribution and L �
denotes the probability law of the indicated random 
ector.

Ž . Ž .Observe that the condition n�R log log R�0 appearing in ii.b is slightly
Ž .stronger than n�R�0 appearing in West’s Theorem 4.1 a . West does not

Ž .require a condition linking n and R when F�0; our condition in ii.a ,
Ž .necessitated by the bootstrap, is nevertheless weaker than that of ii.b , as 	�1.

It is an appealing and somewhat remarkable feature of this result that the
ˆcoefficient estimates � do not have to be recomputed under the resampling. At

Ž .key role in ensuring this is played by the requirements of ii . When neither
condition holds, the conclusion still holds, provided that f * is modified to

� 1 T ˆŽ .Ž .include a term estimating �n Ý � f � * � � � * , such ast� R t� � t
�1 T � ˆ ˆ� ˆŽ .Ž .�n Ý � f � � �� . We omit further discussion of this situation fort�R t�� T t T

the sake of brevity.
ˆAlthough the absence of the need to recompute � is quite convenient, it ist

ˆpossible that a method in which � is recomputed as part of the resamplingt
could yield an improvement in the resulting approximations, as a referee points
out. We leave this possibility to further research.

COROLLARY 2.4: Under the conditions of Theorem 2.3, we ha
e that as T��

p
� �1�2 Ž .� L V �Z , . . . , Z , L max n f �E f � 0Ž .ž /l 1 T�� k�1, . . . , l k k

and

p
� �1�2 Ž .� L W �Z , . . . , Z , L min n f �E f � 0,Ž .ž /l 1 T�� k�1, . . . , l k k

� �1�2Ž .where W �min n f � f .l k�1, . . . , l k k

Thus, by comparing V to the quantiles of a large sample of realizations ofl
�V , we can compute a Bootstrap Reality Check p-value for testing that the bestl

model has no predictive superiority relative to the benchmark.
1�2Ž Ž ..When � is singular, we can partition n f�E f * as

� � 1�2Ž . Ž Ž ..ZZ � ZZ , ZZ ��n f�E f *n 1n 2 n
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p

such that ZZ �A ZZ � 0, where ZZ is l �1, l � l� l , l 	0, ZZ is l �1,2 n 1n 1n 1 1 2 2 2 n 2
and A is a finite l � l matrix. Then � has the form2 2

� � A�11 11
�� ,

A� A� A�11 11

Ž .where ZZ �N 0, � . Corollary 2.4 continues to hold because, e.g., max1n 11 k�1, . . . , l
� � ��1�2Ž Ž .. � � �Ž . � �Ž Ž Žn f � E f � max ZZ � max ZZ , ZZ � � max ZZ , A ZZ � ZZ �k k n 1n 2 n 1n 1n 2 n

.. � Ž Ž ..A ZZ � �� ZZ , ZZ �A ZZ , say, which is a continuous function of its1n 1n 2 n 1n
arguments. Straightforward arguments parallel to those of Theorem 2.3 and

� � � �Ž Ž ..Corollary 2.4 show that the probability law of V �� ZZ , ZZ �A ZZl 1n 2 n 1n
Ž Ž ..coincides with that of � ZZ , ZZ �A ZZ .1n 2 n 1n

The test’s level can be driven to zero at the same time the power approaches
one, as our test statistic diverges at rate n1�2 under the alternative:

�1�2Ž Ž .. Ž . ŽPROPOSITION 2.5: Suppose that n f �E f �N 0, � for � 	0 e. g.1 1 11 11
Ž . Ž . . Ž � .Assumption A.1 a or A.1 b of the Appendix holds , and suppose that E f �01
Ž � . Ž � .and, if l�1, E f �E f , for all k�2, . . . , l.1 k

� 1�2Ž . � �Then for any 0�c�E f , P V �n c �1 as T��.1 l

2.c Extensions and Variations

We now discuss some of the simpler extensions of the preceding results.
First, we let the model selection criterion be a function of a vector of

averages. Examples are the prediction sample R2 for evaluating forecasts or the
prediction sample Sharpe ratio for evaluating investment strategies.

In this case we seek to test the null hypothesis

Ž � � �. Ž � � �.H : max g E h �g E h ,o k�1, . . . , l k 0

Ž m. � Ž .where g maps U �� to � , with the random m-vector h �h Z, � * ,k k
k�0, . . . , l. We require that g be continuously differentiable on U, such that its

� � �Jacobian, Dg, is nonzero at E h �U, k�0, . . . , l.k
Ž . Ž .Relevant sample statistics are f �g h �g h , where h and h are m�1k k 0 0 k

vectors of averages computed over the prediction sample for the benchmark
�1 T ˆ ˆmodel and the k th specification respectively, i.e., h �n Ý h , h �k t�R k , t�� k , t��

ˆŽ .h Z , � , k�0, . . . , l. Relevant bootstrapped values are, for k�0, . . . , l,k t�� t
� � � � � ��1 T ˆ ˆ ˆŽ . Ž . Ž .f �g h �g h , with h �n Ý h , where h �h Z , � ,k k 0 k t�R k , t�� k , t�� k � Ž t .�� � Ž t .

t�R, . . . , T.
Let f be the l�1 vector with elements f , let f * be the l�1 vector withk

� � �Ž � �.elements f , and let �* be the l�1 vector with elements � �g E h �k k k
Ž � � �.g E h , k�1, . . . , l. Under asymptotic normality, application of the mean0

value theorem gives

1�2 Ž . Ž .n f��* �N 0, � ,
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Ž � .for suitably redefined � . A version of Proposition 2.2 now holds with E fk
� Ž Ž ..replaced by � and F replaced by H�E Dh Z, � * , where Dh is the Jacobiank

of h with respect to �. To state analogs of previous results, we modify
Assumption A.

ASSUMPTION A: Assumption A holds for h replacing f.

Ž m.COROLLARY 2.6: Let g : U�� U�� be continuously differentiable such
� � �that the Jacobian of g, Dg, has full row rank one at E h �U, k�0, . . . , l.k

Ž .Suppose either: i Assumptions A� and B hold and there are no estimated
Ž . Ž .parameters; or ii Assumptions A�, B, and C hold, and either: a H�0 and

�	 Ž 	�� .q �cn for constants c�0, 0�	�1 such that n �R log log R�0 asn
Ž . Ž .T�� for some ��0; or b n�R log log R�0 as T��. Then for f * computed

using P&R’s stationary bootstrap, as T��

p
1�2 1�2� Ž .�� L n f *� f �Z , . . . , Z , L n f��* � 0.Ž .ž /1 T��

� � �Using the original definitions of V and W in terms of f and f gives thel l k k
following corollary.

COROLLARY 2.7: Under the conditions of Corollary 2.6, we ha
e that as T��,
p

� �1�2� L V �Z , . . . , Z , L max n f �� � 0Ž .ž /l 1 T�� k�1, . . . , l k k

and
p

� �1�2� L W �Z , . . . , Z , L min n f �� � 0.Ž .ž /l 1 T�� k�1, . . . , l k k

As before, the test can be performed by comparing V to the order statistics ofl
� 1�2V . Again, the test statistic diverges to infinity at rate n under the alterna-l, i

tive.

1�2ŽPROPOSITION 2.8: Let f , �*, and � be as defined abo
e. Suppose that n f �1
� . Ž . � � �� �N 0, � for � 	0, and suppose that � �0 and, if l�1, � �� for1 11 11 1 1 k

all k�2, . . . , l.
� 1�2� �Then for any 0�c�� , P V �n c �1 as T��.1 l

ˆThroughout, we have assumed that � is updated with each new observation.t
It is easily proven that less frequent updates do not invalidate our results. The

1�2Ž .key condition is the asymptotic normality of n f��* , which holds with less
Ž .frequent updates, as West 1994 discusses.

Indeed, the estimated parameters need not be updated at all. If the in-sample
ˆestimate � is applied to all out-of-sample observations, the proofs simplifyR

ˆŽsignificantly. Also, inferences may then be drawn conditional on � , which onlyR
Ž . .entails application of part i of Theorem 2.3 or Corollary 2.6. Application of an
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in-sample estimate to a ‘‘hold-out’’ or ‘‘test’’ dataset is common practice in
cross-section modeling. It is easily proven that the Monte Carlo and Bootstrap
Reality Check methods apply directly. For example, one can test whether a

Žneural network of apparently optimal complexity as determined from the
.hold-out set provides a true improvement over a simpler benchmark, e.g., a

zero hidden unit model. Applications to stratified cross-section data require
replacing stationary �-mixing with suitable controlled heterogeneity assumptions
for independent not identically distributed data. Results of Gonçalves and

Ž .White 1999 establishing the validity of the P&R’s stationary bootstrap for
heterogenous near epoch dependent functions of mixing processes, analogous to

Ž .results of Fitzenberger 1997 for the moving blocks bootstrap with heteroge-
neous �-mixing processes, suggest that this should be straightforward.

Ž Ž ..Cross-validation Stone 1974, 1977 represents a more sophisticated use of
‘‘hold-out’’ data. It is plausible that our methods may support testing that the
best cross-validated model is no better than a given benchmark. A rigorous
analysis is beyond our current scope, but is a fruitful area for further research.

ˆOur results assume that � always uses all available data. In applications,t
ˆ‘‘rolling’’ or ‘‘moving’’ window estimates are often used. These construct � fromt

a finite length window of the most recent observations. The use of rolling�mov-
ing windows also has no adverse impact. Our results apply immediately, because
the parameter estimate is now a function of a finite history of a mixing process,
which is itself just another mixing process, indexed by t. The estimation aspect
of the analysis thus disappears.

Typically, rolling�moving window estimates are used to handle nonexplosively
Ž .nonstationary data. The results of Gonçalves and White 1999 again suggest

that it should be straightforward to relax the stationarity assumption to one of
controlled heterogeneity. In the rolling window case, there is again no necessity
of dealing explicitly with estimation aspects of the problem.

A different type of nonstationarity important for economic modeling is that
Ž Ž ..arising in the context of cointegrated processes Engle and Granger 1987 .
Ž .Recent work of Corradi, Swanson, and Olivetti 1998 shows how the present

methods extend to model selection for cointegrating relationships.
Our use of the bootstrap has been solely to obtain useful approximations to

the asymptotic distribution of our test statistics. As our statistics are nonpivotal,
we can make no claims as to their possible higher order approximation proper-
ties, as can often be done for pivotal statistics. Nor does there appear to be any
way to obtain even an asymptotically pivotal statistic for the extreme value
statistics of interest here. Nevertheless, recentering and rescaling may afford
improvements. We leave investigation of this issue to subsequent research.

3. IMPLEMENTING THE BOOTSTRAP REALITY CHECK

We now discuss step-by-step implementation of the Bootstrap Reality Check,
demonstrating its simplicity and convenience. As we show, the Bootstrap Reality
Check is especially well-suited for recursive specification searches of the sort
typically undertaken in practice.
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We suppose that set of n prediction observations, t�R, . . . , T , is given, and
that the performance�selection criterion has been decided upon. We also
assume that a method for generating a collection of l model specifications has
been specified.

We next specify the number of resamples, N, and the smoothing parameter,
q�q . As N determines the accuracy of the p-values estimated, this should be an

moderately large number, say 500 or 1000. The time required for resampling
increases linearly with N on a serial computer, but resampling can proceed

� 4simultaneously on a parallel computer. Dependence in Z is accomodated byt
� � 4q; the more dependence, the smaller q should be. If f is a martingalet��

Ž .difference sequence at least under the null , then set q to 1. More generally, q
can be determined in a data dependent manner, e.g., in a manner analogous to

Ž .that analyzed by Hall, Horowitz, and Jing 1995 . For concreteness and simplic-
ity, suppose a satisfactory value for q is specified a priori, say q� .1.

Next we apply P&R’s stationary bootstrap to generate N sets of random
� Ž . 4observation indexes of length n, � t , t�R, . . . , T , i�1, . . . , N. These indexesi

are generated once and for all at the outset.
Significantly, the only information required to generate the resampling in-

Ž .dexes is R, T , q, N, an agreed upon random number generator RNG , and the
RNG seed. As we discuss further below, this enables the Bootstrap Reality
Check to be carried out by researchers at separate locations and at separate
times. Further, researchers do not need to share the n� l matrix of data

�ˆ� �f , which might easily be unavailable. Only the scalars V , V , i�1, . . . , Nk , t�� l l, i
are required. The data storage and manipulation requirements for this are
proportional to l, compared to the l 2 requirements for the Monte Carlo
method.

The specification search can be conveniently done in a simple recursive
manner. First, compute parameter estimates and performance values for the

ˆ � ˆ 2Ž . Ž .benchmark model, say h �� y �X � t�R, . . . , T . Then com-0, t�1 t�1 0, t�1 0, t
ˆpute parameter estimates and performance values for the first model, h �1, t�1

� 2ˆ ˆ ˆ ˆŽ .� y �X � . From these form f �h �h and f �t�1 1, t�1 1, t 1, t�1 1, t�1 0, t�1 1
��1 T �1 Tˆ ˆn Ý f . Using the P&R indexes we also form f �n Ý f ,t�R 1, t�1 1, i t�R 1, � Ž t .�1i

� �1�2 1�2Ž .i�1, . . . , N. Now set V �n f , V �n f � f , i�1, . . . , N. Inferences1 1 1, i 1, i 1
for the first model result by comparing the sample value of V to the percentiles1

�of V .1, i
ˆ �� ˆ 2 ˆŽ .For the second model, compute h �� y �X � , form f2, t�1 t�1 2, t�1 2, t 2, t�1

��1 T �1 Tˆ ˆ ˆ ˆ�h �h , f �n Ý f , and f �n Ý f . Then set2, t�1 0, t�1 2 t�R 2, t�1 2, i t�R 2, � Ž t .�1i

1�2V �max n f , V , and� 42 2 1

� � �1�2 Ž .V �max n f � f , V i�1, . . . , N .Ž .½ 52, i 2, i 2 1, i

To test whether the better of the two models beats the benchmark, compare the
�sample value of V to the percentiles of V .2 2, i
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Proceed recursively in this manner for k�3, . . . , l, testing whether the best of
the k models analyzed so far beats the benchmark by comparing the sample
value of

1�2V �max n f , V� 4k k k�1

to the percentiles of

� � �1�2 Ž .V �max n f � f , V i�1, . . . , N .Ž .½ 5k , i k , i k k�1, i

� �Ž .Specifically, denote the sorted values of V the order statistics as V ,l, i l, Ž1.
� � � �V , . . . , V . Find M such that V �V �V . Then a simple versionl, Ž2. l, ŽN . l, ŽM . l l, ŽM�1.

of the Bootstrap Reality Check p-value is

P �1�M�N.RC

This value can be refined by interpolation or by fitting a suitable density tail
model to the order statistics and obtaining the Bootstrap Reality Check p-value
from the fitted model.

�The recursions given for V and V make it clear that to continue ak k , i
specification search using the Bootstrap Reality Check, it suffices to know V ,l�1

� Ž .V , i�1, . . . , N, and the P&R indexes � t . For the latter, knowledge ofl�1, i i
ˆ� �R, T , q, N, the RNG, and the RNG seed suffice. Knowing or storing f fork , t��

ˆ ˆ l�Ž .k� l is unnecessary, nor do we need to compute or store � , C, and 
 , � ,l i i, l
i�1, . . . , N. This demonstrates not only a computational advantage for the
Bootstrap Reality Check over the Monte Carlo version, but also the possibility
for researchers at different locations or at different times to further understand-
ing of the phenomenon modeled without needing to know the specifications
tested by their collaborators or competitors. Some cooperation is nevertheless

�required, as R, T , q, N, the RNG, the RNG seed, and V , V , i�1, . . . , Nl�1 l�1, i
must still be shared, along with the data and the specification and estimation
method for the benchmark model.

Subsequent specification searches can potentially contribute to understanding
in two different ways. First, a better specification may be discovered; second, the
p-values associated with the current best may change. The first possibility is
precisely the direction in which the hope for scientific advances lies; this is what
motivates economists and others to continually revisit the available data. It
might be thought, however, that danger lies in the second direction: might not
the p-values for the current best model erode to insignificance as the search
continues, casting into doubt a model that actually represents a useful under-
standing?

The present theory ensures that when testing a finite number of specifications,
the Reality Check p-value of a truly best model declines to zero as T grows.
Nevertheless, when theory does not provide strong constraints on the number of
plausible specifications, it is natural to consider what happens when l grows with
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T. Even then, it is plausible that the p-value of a truly best model can still tend
to zero, provided that the complexity of the collection of specifications tested is
properly controlled.

The basis for this claim is that the statistic of interest, V , is asymptotically thel
extreme of a Gaussian process with mean zero under the null. When the

Ž .complexity e.g., metric entropy or Vapnick-Chervonenkis dimension of the
collection of specifications is properly controlled, the extremes satisfy strong

Ž Ž ..probability inequalities uniformly over the collection e.g., Talagrand 1994 .
These imply that the test statistic is bounded in probability under the null, so
the critical value for a fixed level of test is bounded. Under the alternative, our
statistic still diverges, so the power can still increase to unity, even as the level
approaches zero.

Precisely this effect operates in testing for a shift in the coefficients of a
Ž .regression model at an unknown point, as, e.g., in Andrews 1993 . For this, one

Ž .examines a growing number of models indexed by the breakpoint as the
sample size increases. Nevertheless, power does not erode, but increases with
the sample size. A rigorous treatment for our context is beyond our present
scope, but these heuristics strongly suggest that a ‘‘real’’ relationship need not
be buried by properly controlled data snooping. Our illustrative examples
Ž .Section 4 provide some empirical evidence on this issue.

4. AN ILLUSTRATIVE EXAMPLE

We illustrate the Reality Check by applying it to forecasting daily returns of
Ž .the S&P 500. Index one day ahead ��1 . We have a sample of daily returns

from March 29, 1988 through May 31, 1994. We select R�803 and T�1560 to
yield n�758, covering the period June 3, 1991 through May 31, 1994. Daily

Ž .returns are y � p �p �p , where p is the closing price of the S&P 500t t t�1 t�1 t
Index on trading day t.

Figure 1 plots the S&P 500 closing price and returns. The market generally
trended upward, although there was a substantial pullback and retracement

Ž . Ž .from day 600 August 10, 1990 to day 725 February 7, 1991 . Somewhat higher
returns volatility occurs in the first half of the period than in the last. This is

Ž .nevertheless consistent with martingale difference therefore unforecastable
excess returns, as the simple efficient markets hypothesis implies.

To see if excess returns are forecastable, we consider a collection of linear
models that use ‘‘technical’’ indicators of the sort used by commodity traders, as
these are easily calculated from prices and there is some recent evidence that

Žcertain such indicators may have predictive ability Brock, Lakonishok, and
Ž ..LeBaron 1992 in a period preceding that analyzed here. Altogether, we use 29

different indicators and construct forecasts using linear models including a
constant and exactly three predictors chosen from the 29 available. We examine

Ž .all l� C �3,654 models. Our benchmark model k�0 contains only a29 3
constant, embodying the simple efficient markets hypothesis.
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FIGURE 1.�S&P500 close and daily returns.
Notes: The finely dashed line represents the daily close of the S&P500 cash index; values can be

read from the left-hand axis. The solid line represents daily returns for the S&P500 cash index, as
measured from the previous day’s closing price; values can be read from the right-hand axis.

Ž .The indicators consist of lagged returns Z �y , a collection oft, 1 t�1
Ž .‘‘momentum’’ measures Z , . . . , Z , a collection of ‘‘local trend’’ measurest, 2 t, 11

Ž . Ž .Z , . . . , Z , a collection of ‘‘relative strength indexes’’ Z , . . . , Z , andt, 12 t, 15 t, 16 t, 19
Ž .a collection of ‘‘moving average oscillators’’ Z , . . . , Z .t, 20 t, 29

Ž .The momentum measures are Z � p �p �p , j�2, . . . , 11. Thet, j t�1 t�1�j t�1�j
Ž .local trends Z , . . . , Z are the slopes from regressing the price on at, 12 t, 15

constant and a time trend for the previous five, ten, fifteen, and twenty days. The
Ž .relative strength indexes Z , . . . , Z are the percentages of the previoust, 16 t, 19

five, ten, fifteen, or twenty days that returns were positive. Each moving average
oscillator is the difference between a simple moving average of the closing price
over the previous q days and that over the previous q days, where q �q , for1 2 1 2
q �1, 5, 10, 15, and q �5, 10, 15, 20. The ten possible combinations of q and1 2 1

Ž .q yield indicators Z , . . . , Z .2 t, 20 t, 29
For each model, we compute OLS estimates for R�803 through T�1560.

Ž Ž ..Using a version of recursive least squares Ljung 1987, Ch. 11 dramatically
speeds computation.

Ž .We first consider the negative mean squared prediction error performance
ˆ � ˆ 2 � ˆ 2Ž . Ž .measure f �� y �X � � y �X � , where Xk , t�1 t�1 k , t�1 1, t t�1 0, t�1 0, t k , t�1
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contains a constant and three of the Z ’s, and X contains a constant only.t 0, t�1
We also consider directional accuracy,

� �ˆ ˆ ˆf �1 y �X � �0 �1 y �X � �0 ,k , t�1 t�1 k , t�1 1, t t�1 0, t�1 0, t

ˆ� �where 1 � is the indicator function. The average of f here is the differencek , t�1
between the rate that specification k correctly predicts the market direction and
that of a naive predictor based on average previous behavior.

Because of its computational convenience, we apply the Bootstrap Reality
Check, specifying N�500 and q� .5 for P&R’s stationary bootstrap. Given the
apparent lack of correlation in the regression errors, this should easily provide

Ž .sufficient smoothing. In fact, Sullivan, Timmerman, and White 1999 find little
sensitivity to the choice of q in a related context.

Note that Corollary 2.4 does not immediately apply to the directional accuracy
case, due to the nonsmoothness of the indicator function and the presence of
estimated parameters. Nevertheless, reasoning similar to that used in establish-
ing the asymptotic normality of the least absolute deviations estimator should
plausibly ensure that the conditions of Proposition 2.2 hold, so that results

Ž .analogous to Corollary 2.4 and its extension to the case in which F	0 can be
established under similar conditions. Supporting evidence is provided by Monte

Ž .Carlo experiments reported in Sullivan and White 1999 , where, for the case of
directional accuracy with estimated parameters, the Bootstrap Reality Check
delivers quite good approximations to the desired limiting distribution�better,
in fact, than for the mean squared prediction error case. This gives us some
assurance that the directional accuracy case is appropriate here as an illustra-
tion.

Examining the numerical results presented in Table I, we see that we fail to
reject the null that the prediction mse-best model does not beat the efficient
markets benchmark. This is not surprising, but without the Reality Check, there
would be no way to tell whether or not we should be surprised by the observed
superiority of the mse-best model.

TABLE I

REALITY CHECK RESULTS: PREDICTION MEAN SQUARED ERROR PERFORMANCE

Best predictor variables: Z , Z , Zt , 5 t , 13 t , 25
Best

Experiment Benchmark

RMSE .006373 .006410
Difference in Prediction Mean Squared Error: .4791E-06
Bootstrap Reality Check p-value: .3674
Naive p-value: .1068

Notes: The ‘‘Difference in Prediction Mean Squared Error’’ is the largest difference in candidate model performance
Ž .relative to the benchmark across all experiments, measured as the difference in negative prediction mean squared error

between the candidate model for a given experiment and that of the benchmark model. The ‘‘Bootstrap Reality Check
p-value’’ is that corresponding to the best model found. The ‘‘Naive p-value’’ is the Bootstrap Reality Check p-value
computed by treating the best model as if it were the only model considered.
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Conducting inference without properly accounting for the specification search
can be extremely misleading. We call such a p-value a ‘‘naive’’ p-value. Applying
the bootstrap to the best specification alone yields a naive p-value estimate of
.1068, which might be considered borderline significant. The difference between
the naive p-value and that of the Reality Check gives a direct estimate of the
data-mining bias, which is seen to be fairly substantial here.

Our results lend themselves to graphical presentation, revealing several inter-
esting features. Figure 2 shows how the Reality Check p-values evolve. The
order of experiments is arbitrary, so only the numbers on the extreme right
ultimately matter. Nevertheless, the evolution of the performance measures and
the p-value for the best performance observed so far exhibit noteworthy
features.

Specifically, we see that the p-value drops each time a new best performance
is observed, consistent with the occurrence of a new tail event. Otherwise, the
p-value creeps up, consistent with taking proper account of data re-use. This
movement is quite gradual, and becomes even more so as the experiments

FIGURE 2.�S&P500 MSE experiments.
Notes: The finely dashed line represents candidate model performance relative to the benchmark,

Ž .measured as the difference in negative prediction mean squared error between the candidate
model for a given experiment and that of the benchmark model. The coarsely dashed line represents
the best relative performance encountered as of the given experiment number. The values for both
of these can be read from the left-hand axis. The solid line represents the Bootstrap Reality Check
p-value for the best model encountered as of the given experiment number. The p-value can be read
from the right-hand axis.
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proceed. In fact, the p-value stays flat for modest stretches, due to the relatively
high correlation among the forecasts. This illustrates that consideration of even
a large number of models need not lead to dramatic erosion of the Reality
Check p-value.

The indicators optimizing directional accuracy differ from those optimizing
prediction mse. While there is an impressive gain in directional accuracy
achieved by the best model, as seen in the numerical results of Table II, this is
not statistically significant. This example dramatically illustrates the dangers of
data mining. The naive p-value is .0036! Anyone relying on this would be
seriously misled. Viewing the intermediate results in Figure 3, we observe
features similar to those already seen in the prediction mse experiments,
reinforcing our earlier observations.

Although use of the naive p-value is potentially dangerous, it does have value.
Specifically, if the naive p-value is large, there is no need to compute the Reality
Check p-value, as this can only be larger than the naive p-value. But if the naive
p-value is small, one can then compute the Reality Check p-value in order to
accurately assess the evidence against the null.

5. SUMMARY AND CONCLUDING REMARKS

Data snooping occurs when a given set of data is used more than once for
purposes of inference or model selection. When such data reuse occurs, there is
always the possibility that any satisfactory results obtained may simply be due to
chance rather than to any merit inherent in the method yielding the results. Our
new procedure, the Reality Check, provides simple and straightforward proce-
dures for testing the null that the best model encountered in a specification
search has no predictive superiority over a given benchmark model, permitting
account to be taken of the effects of data snooping.

Many fascinating research topics remain. These include permitting the num-
ber of specifications tested to increase with the sample size, application of the
method to the results of cross-validation, and the use of recentering, rescaling,

TABLE II

REALITY CHECK RESULTS: DIRECTIONAL ACCURACY PERFORMANCE

Best predictor variables: Z , Z , Zt , 13 t , 14 t , 26
Best

Experiment Benchmark

Percent Correct 54.7493 50.7916
Difference in Prediction Directional Accuracy: .0396
Bootstrap Reality Check p-value: .2040
Naive p-value: .0036

Notes: The ‘‘Difference in Prediction Directional Accuracy’’ is the largest difference in candidate model performance
relative to the benchmark across all experiments, measured as the difference in the proportion of correct predicted
direction between the candidate model for a given experiment and that of the benchmark model. The ‘‘Bootstrap Reality
Check p-value’’ is that corresponding to the best model found. The ‘‘Naive p-value’’ is the Bootstrap Reality Check p-value
computed by treating the best model as if it were the only model considered.
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FIGURE 3.�S&P500 direction experiments.
Notes: The finely dashed line represents candidate model performance relative to the benchmark,

measured as the difference in the proportion of correct predicted direction between the candidate
model for a given experiment and that of the benchmark model. The coarsely dashed line represents
the best relative performance encountered as of the given experiment number. The values for both
of these can be read from the left-hand axis. The solid line represents the Bootstrap Reality Check
p-value for the best model encountered as of the given experiment number. The p-value can be read
from the right-hand axis.

or other modifications to achieve improvements in sampling distribution approx-
imations.

Simulation studies of the finite sample properties of both the Monte Carlo
and the Bootstrap versions of the Reality Check are a top priority. A first step in

Ž .this direction is Sullivan and White 1999 , in which we find that the tests
Ž .typically though not always appear conservative, that test performance is

relatively insensitive to the choice of the bootstrap smoothing parameter q, and
that there is much better agreement between actual and bootstrapped critical
values when the performance measure has fewer extreme outlying values.

Finally, and of particular significance for economics, finance, and other
domains where our scientific world-view has been shaped by studies in which
data reuse has been the unavoidable standard practice, there is now the
opportunity for a re-assessment of that world-view, taking into account the
effects of data reuse. Do we really know what we think we know? That is, will
currently accepted theories withstand the challenges posed by a quantitative
accounting of the effects of data snooping? A start in this direction is made by
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Ž Ž ..studies of technical trading rules Sullivan, Timmermann, and White 1999 and
Ž Ž ..calendar effects Sullivan, Timmermann, and White 1998 in the asset markets.

Those of us who study phenomena generated once and for all by a system
outside our control lack the inferential luxuries afforded to the experimental
sciences. Nevertheless, through the application of such methods as described
here, we need no longer necessarily suffer the poverty enforced by our previous
ignorance of the quantitative effects of data reuse.

Dept. of Economics, Uni
ersity of California, San Diego, and QuantMetrics R&D
Associates, LLC, 6540 Lusk Bl
d., Suite C-157, San Diego, CA 92121, U.S.A.;
halwhite@earthlink.net
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MATHEMATICAL APPENDIX

In what follows, the notation corresponds to that of the text unless otherwise noted. For
Ž .convenience, we reproduce West’s 1996 assumptions with this notation.

ASSUMPTION A:

Ž . Ž .A.1: In some open neighborhood N around � *, and with probability one: a f � is measurablet
Ž .and twice continuously differentiable with respect to � ; b let f be the ith element of f ; for i�1, . . . , li t t

� 2 Ž . �there is a constant D�� such that for all t, sup � f � ������ �m for a measurable m , for� � N it t t
which Em �D.t

ˆ ˆ Ž . Ž . Ž . Ž . Ž . Ž .A.2: The estimate � satisfies � �� *�B t H t , where B t is kk�q and H t is q�1 , witht ta. s . �1 tŽ . Ž . Ž . Ž . Ž . Ž .a B t � B, B a matrix of rank kk; b H t � t Ý h � * for a q�1 orthogonality conditions�1 s
Ž . Ž . Ž .h � * ; c Eh � * �0.S s
Let

� ft� � �Ž . Ž .f � f � * , f � � * , F�Ef .t t t� t���

Ž . 
� Ž � . �� �� � 
 4 d 
 
 Ž .A.3: a For some d�1, sup E vec f �, f , h � ��, where � denotes Euclidean norm. bt t� t t
� Ž � . Ž � �� . �� � Ž . Ž .vec f �F �, f �Ef , h � is strong mixing, with mixing coefficients of size �3d� d�1 . ct� t t t
� Ž � . �� �� � Ž . Ž . Ž � � .Ž � � .vec f �, f , h � is co
ariance stationary. d Let � j �E f �Ef f �Ef �, S �t� t t f f t t t� j t f f

� Ž .Ý � j . Then S is p.d.j��� f f f f

Ž . Ž .A.4: R, n�� as T��, and lim n�R �� , 0�� , ��; ���� lim R�n �0.T �� T ��

Ž . Ž . Ž Ž ..A.5: Either: a ��0 or F�0; or b S is positi
e definite, where West 1996, pp. 1071�1072

S S B�f f f h
S� .

BS BS B�h f h h

� 4We let P denote the probability measure governing the behavior of the time series Z .t
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Ž .PROOF OF PROPOSITION 2.1: We first prove b . Suppose first that � is positive definite, so that
for all k, S� �S �0, where S is an l�1 vector with 1 in the first element, �1 in the kth elementk k k

l� � � �and zeroes elsewhere. Let A � f � f . We seek to show P � A �1 or equivalently thatk 1 k k�2 k
� l c � � l c � l � � � c �P � A �0. As P � A �Ý P A , it suffices that for any ��0, max P A �k� 2 k k�2 k k�2 k 2 � k � l k

��l for all T sufficiently large. Now

�� �c 1�2� � � � � Ž Ž . � Ž .�.P A �P f � f �0 �P n f �E f � f �E f �S �Sk 1 k 1 1 k k k k

1�2 Ž Ž � . Ž � .. � ��n E f �E f �S �S .k 1 k k

1�2ŽBy the assumed asymptotic normality, we have the unit asymptotic normality of Z �n f �k 1
�� �Ž . � Ž .�.E f � f �E f �S �S , so that1 k k k k

� c � Ž . � � Ž .P A �� z �P Z �z �� zk k k k k

Ž . � � � Ž . ��� z �sup P Z �z �� z ,k z k

1�2Ž Ž � . Ž � .. � Ž � . Ž � . �where z �n E f �E f �S �S . Because E f �E f and S �S �� we have z �k k 1 k k 1 k k k k
Ž .�� as T�� and we can pick T sufficiently large that � z ���2 l, uniformly in k. Polya’sk

Ž Ž ..theorem e.g. Rao 1973, p. 118 applies given the continuity of � to ensure that for T sufficiently
� � � Ž . � � c �large sup P Z �z �� z ���2 l. Hence for all k we have P A ���l for all T sufficientlyz t k

� � � Ž .large, and the first result follows. Replacing A with A � f �c and arguing analogously gives a .k k 1
Now suppose that � is positive semi-definite, such that for one or more values of k, S� �S �0.k kp

� �1�2Ž Ž . � Ž .�.Then, redefining Z to be Z �n f �E f � f �E f , we have Z � 0, so thatk k 1 1 k k k

c� � � �P A �P f � f �0k 1 k

� � � �1�2 1�2� Ž Ž . � Ž .�. Ž Ž . Ž ..��P n f �E f � f �E f �n E f �E f1 1 k k k 1

� ��P Z �z ,k k

1�2Ž Ž � . Ž � .. Ž � . Ž � .where now z �n E f �E f . Because E f �E f we have z ��� for any ��0 andk k 1 1 k kp
all T sufficiently large. It follows from Z � 0 that for all T sufficiently large we have for suitablek

� � � �choice of � that P Z �z �P Z ��� ���2 l, uniformly in k. The results now follow as before.k k k
Q.E.D.

1�2Ž Ž .. Ž .PROOF OF PROPOSITION 2.2: By assumption, n f�E f �N 0, � . As the maximum or
minimum of a vector is a continuous function of the elements of the vector, the results claimed

Ž Ž ..follow immediately from the Continuous Mapping Theorem Billingsley 1968, Theorem 2.2 .
Q.E.D.

Ž . Ž .The proof of our main result Theorem 2.3 uses the following result of Politis 1999 .

� � 4LEMMA A.1: Let X be obtained by P&R’s stationary bootstrap applied to random 
ariablesnt
� 4 � Ž . � � 4X , . . . , X using smoothing parameter q , and let � k denote the �-mixing coefficients for X1 n n n nt

� 4 Ž . � Ž . Ž .kunder the bootstrap probability conditional on X , . . . , X . Then: i � k �n 1�q for all k1 n n n
Ž . �	 � Ž .sufficiently large; and ii if q �cn for some constants c�0 and 0�	�1, then � k �n n

Ž �	 . 	n exp �ckn for all k	n .

Ž . � � 4 � � � �PROOF: i The finite Markov chain X has transition probability P* X �x�X �x �nt n, t�1 n, t i
� 4 � 4q �n for x� x , . . . , x 
 x , . . . , x and �1�q �q �n for x�x , where P* denotesn 1 i i�2 n n n i�1

� 4bootstrap probability conditional on X , . . . , X . For all n sufficiently large, the minimum transition1 n
Ž .probability is q �n. As the Markov chain has n states, Billingsley 1995, Example 27.6 impliesn

� Ž . Ž .k Ž .k Ž . �	 � Ž . Ž �	 .k� k �n 1�nq �n �n 1�q . ii Substituting q �cn gives � k �n 1�cn �n n n n n
Ž �	 .Žn	 � c.ck � n	 Ž �	 .n 1�cn �n exp �ckn . Q.E.D.
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Ž .Next, we provide a statement of a version of P&R’s 1994a Theorem 2.

� �6� �THEOREM A.2: Let X , X , . . . be a strictly stationary process, with E X �� for some ��0,1 2 1
�1 n �rŽ . � 4 Ž . Ž .and let ��E X and X �n Ý X . Suppose that X is �-mixing with � k �O k for some1 n t�1 t t

1�2Ž . Ž .r�3 6�� �� . Then � � lim var n X is finite. Moreo
er, if � �0, then� n�� n �

1�2� � Ž . 4 Ž . �sup P n X �� �x �� x�� �0,x n �

where � is the standard normal cumulati
e distribution function. Assume that q �0 and nq �� asn n
� �4n��. Then for X obtained by P&R’s stationary bootstrapt

p
�1�2 1�2� � Ž . 4 � Ž . 4 �sup P n X �X �x�X , . . . , X �P n X �� �x � 0,x n n 1 n n

� ��1 nwhere X �n Ý X .n t�1 t

Now we can state our next assumption:

ASSUMPTION B: The conditions of Theorem A.2 hold for each element of f �.t

Note that Assumption B ensures that the conditions of Theorem A.2 hold for X �
� f � witht t
� �0 for every 
, 
�
�1, given the positive definiteness of S, thus justifying the use of the�

Cramer-Wold device.
Our next lemma provides a convenient approach to establishing the validity of bootstrap methods

Ž .in general situations similar to ours. Similar methods have been used by Liu and Singh 1992 and
Ž .Politis and Romano 1992 , but to the best of our knowledge, a formal statement of this approach

has not previously been given.

Ž . Ž .LEMMA A.3: Let � , FF, P be a complete probability space and for each ��� let �, GG, Q be a�

complete probability space. For m, n�1, 2, . . . and each ��� define

Ž . Ž . Ž . Ž .T �, � �S �, � �X �, � �Y � ,m , n m , n m , n n

Ž . Ž .where S �, � : ��� and X �, � : ��� are measurable-GG. Suppose also that for each 
��,m , n m , n
Ž . Ž .S 
, � : ��� and X 
, � : ��� are measurable-FF. Let Y : ��� be measurable-FF suchm , n m , n n

Ž .that Y �o 1 .n P
Ž . Ž . Ž .Suppose there exist random 
ariables Z �, � on �, GG, Q such that for each 
��, Z 
, � : �n � n

� ��� is measurable-FF with P C �1 as n��, forn

� Ž . Ž . 4C � ��S �, � � Z �, � as m�� ,n m , n Q n�

where � denotes con
ergence in distribution under the measure Q , withQ ��

� Ž . Ž . � Ž .sup F z , � �F z �o 1 ,z � � n P

Ž . � Ž . �where F z, � �Q Z �, � �z for some cumulati
e distribution function F, continuous on �.n � n
� �Suppose further that P D �1 as n��, forn

� Ž . 4D � ��X �, � � 0 as m�� ,n m , n Q�

where � denotes con
ergence in probability under Q .Q ��

Let m�m �� as n��. Then for all ��0,n

� � � � Ž . � Ž . 4P � sup Q T �, � �z �F z ��� �0 as n��.z � � � m , n

Ž Ž ..PROOF: The asymptotic equivalence lemma e.g., White 1984, Lemma 4.7 ensures that when
Ž . Ž . Ž . Ž . Ž . Ž . Ž .S �, � � Z �, � and X �, � �o 1 , it follows that S �, � �X �, � � Z �, � ,m , n Q n m , n Q m , n m , n Q n� � �

� �which holds for all � in C �D , P C �D �1. It thus suffices to prove the result forn n n n
Ž . Ž . Ž .T �, � �S �, � �Y � .m , n m , n n
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For notational convenience, we suppress the dependence of m on n, writing m�m through-n n
out. Pick ��0, and for � to be chosen below define

� � Ž . � 4A � �� Y � �� ,n , � n

� � � Ž . Ž . 4B � � sup F z , � �F z ��� .n , � z n

Ž . � Ž . Ž . � Ž .Because Y �o 1 and sup F �, z �F z �o 1 , we can choose n sufficiently large thatn P z n P
� � � � � c �P A ���3, P B ���3, and P C ���3.n, � n, � n

c c Ž c . � Ž . � Ž .For ��K �A �B �C �A we have Y � �� . This and S �, � �z�� implyn n, � n, � n n, � n m , n
Ž .T �, � �z, so that for ��Km , n n

� Ž . � � Ž . �Q S �, � �z�� �Q T �, � �z .� m , n � m , n

� Ž . � Ž . Ž .Similarly, Y � �� and T �, � �z imply S �, � �z�� , so that for ��Kn m , n m , n n

� Ž . � � Ž . �Q T �, � �z �Q S �, � �z�� .� m , n � m , n

� Ž . �Subtracting Q S �, � �z from these inequalities for ��K gives� m , n n

� Ž . � � Ž . �Q S �, � �z�� �Q S �, � �z� m , n � m , n

� Ž . � � Ž . ��Q T �, � �z �Q S �, � �z� m , n � m , n

� Ž . � � Ž . ��Q S �, � �z�� �Q S �, � �z .� m , n � m , n

We argue explicitly using the second inequality; an analogous argument applies to the first. From the
Ž .triangle inequality applied to the last expression which is nonnegative we have

� Ž . � � Ž . �Q T �, � �z �Q S �, � �z� m , n � m , n

� � Ž . � Ž . �� Q S �, � �z�� �F z�� , �� m , n n

� � Ž . � Ž . �� Q S �, � �z �F z , �� m , n n

� Ž . Ž . � � Ž . Ž . �� F z�� , � �F z�� � F z , � �F zn n

� Ž . Ž . �� F z�� �F z .

Ž . Ž .For ��K �C we can choose n hence m sufficiently large that each of the first two terms isn n
Ž .bounded by ��7, uniformly in z by Polya’s theorem, given the continuity of F �, � for n sufficientlyn

large ensured by the uniform convergence of F to F and the continuity of F. For n sufficientlyn
Ž c .large, the next two terms are each bounded by ��7, uniformly in z for ��K �B . Then n, �

Ž .continuity of F uniformly on � ensures that we can pick � sufficiently small that for n sufficiently�

large, the last term is bounded by ��7, uniformly in z, so that for ��K we haven

� Ž . � � Ž . �Q T �, � �z �Q S �, � �z �5��7,� m , n � m , n

uniformly in z. Analogous argument for the lower bound with ��K givesn

� Ž . � � Ž . ��5��7�Q T �, � �z �Q S �, � �z ,� m , n � m , n

so that uniformly in z

� � Ž . � � Ž . � �Q T �, � �z �Q S �, � �z ���7.� m , n � m , n

By the triangle inequality we have

� � Ž . � Ž . �sup Q T �, � �z �F zz � � � m , n

� � Ž . � � Ž . � ��sup Q T �, � �z �Q S �, � �zz � � � m , n � m , n

� � Ž . � Ž . ��sup Q S �, � �z �F z , �z � � � m , n n

� Ž . Ž . ��sup F z , � �F zz � � n

�5��7���7���7��
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for all n sufficiently large and ��K , which ensures that the second term is bounded by ��7n
Ž . Ž c .K �C and that the final term is also bounded by ��7 K �B . Thus K impliesn n n n, � n

� � � � Ž . � Ž . 4L � � sup Q T �, � �z �F z ��� ,n z � � � m , n

� c � � c � � � � � � c �so that P L �P K �P A �P B �P C �� for all n sufficiently large. But � isn n n, � n, � n
arbitrary, and the result follows. Q.E.D.

Ž . Ž .PROOF OF THEOREM 2.3: We prove only the result for ii . That for i is immediate. We denote
�� Ž .f � f Z , � * . Adding and subtracting appropriately givest�� � Ž t .��

T
�1�2 �1�2 ˆ ˆŽ .n f *� f �n f � fÝ t�� t��

t�R

T T
�� � ��1�2 �1�2 ˆ� � � ��n f � f �n f � fÝ Ýt�� t�� t�� t��

t�R t�R

T
� ���1�2 ˆ� ��n f � fÝ t�� t��

t�R

�� �� �� ,1 n 2 n 3n

with obvious definitions. Under Assumption B, Theorem A.2 ensures that � obeys the conditions1 n
Ž . Ž . Ž .imposed on S in Lemma A.3 with m�n and F z �� z�� . Applying West 1996, p. 1081 tom , n �

� ensures that � �0 a.s., hence in probability-P, satisfying the conditions imposed on Y in2 n 2 n n
� Ž .�Lemma A.3. The result follows from Lemma A.3 if P � �o 1 �1 as n increases, where Q is3n Q

Ž .the probability distribution induced by the stationary bootstrap conditional on Z , . . . , Z , so1 T��

that � satisfies the conditions imposed on X in Lemma A.3 with m�n. For notational3n n, m
convenience, we suppress the dependence of Q on �.

By a mean value expansion, we have

T T
�� � ��1�2 �1�2ˆŽ .� �n � f � � �� * �n w ,Ý Ý3n t�� t t��

t�R t�R

�� Ž . �where � f �� f Z , � * and w is the vector with elementst�� � Ž t .�� t� t

� � � �2ˆ ˆŽ . � Ž . �Ž .w � � �� * � � f � ������ � �� * ,j , t�� t jt�� Ž j. , t t

� � ��1�2 Tˆwith � a mean value lying between � and � *. Routine arguments deliver n Ý w �Ž j., t t t�R t��

Ž .o 1 with probability-P approaching one. It remains to show that the first term of � vanishes inQ 3n
probability-Q with probability-P approaching one.

� � � �� ˆ� � ˆ�Ž . Ž .To proceed, we write ZZ �XX � �� f � � �� * , with � � � �� * .t�R�1 t�R�1 t�R�1 t�� t t�R�1 t
By Chebyshev’s inequality

n n
� � � ��1�2 �2 �1�2� Ž Ž .. � Ž Ž ..Q n ZZ �E ZZ 	� �� var n ZZ �E ZZ ,Ý Ýt Q t Q t Q t

t�1 t�1

where E and var are the expectation and variance induced by probability measure Q.Q Q
� �1 �2 n Ž � Ž � ..� Ž .We now show that var n Ý ZZ �E ZZ �0. By Proposition 3.1 of P&R 1994a andQ t�1 t Q t

� �4 ŽLemma A.1, ZZ is stationary and �-mixing. Standard inequalities for �-mixing processes e.g.,t
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Ž ..White 1984, Lemma 6.15 ensure that

n
� ��1�2 Ž Ž ..var n ZZ �E ZZÝQ t Q t

t�1

n�1
� � �Ž . Ž . Ž .�var ZZ �2 1���n cov ZZ , ZZÝQ 1 Q 1 1��

��1

1�2� � � �1�2Ž . Ž . � Ž .� 
 Ž . 
�var ZZ �2 2 �1 var ZZ ZZ �E ZZ Q , rQ 1 Q 1 1 1

n�1
1�2�1�r�Ž . Ž .� 1���n � � ,Ý n

��1


 
 Ž � � r .1� rwhere ZZ � E ZZ for some r�2, and we make use of stationarity in writing the equality.Q, r Q

 � Ž � .
 
 � 
 � Ž � .�1�2 
 � Ž � .
 
 � 
 
 � 
Now ZZ �E ZZ �2 ZZ and var ZZ � ZZ �E ZZ � ZZ � ZZQ, r Q, r Q, 2 Q, 2 Q, r1 1 1 Q 1 1 1 1 1

Ž .by Jensen’s inequality . Thus,

n
� ��1�2 Ž Ž ..var n ZZ �E ZZÝQ t Q t

t�1

n�1
2 1�2�1�r� �1�2Ž 
 
 . Ž . Ž . Ž .� ZZ 1�4 2 �1 1���n � � .Q , r Ý1 nž /

��1


 � 
 
 � � 
 
 � � 
 �By Minkowski’s inequality, ZZ � Ý XX � �Ý XX � , where XX is the jth compo-Q, r Q, r Q, r1 j j1 j1 j j1 j1 j1
�� � ˆ� ˆŽ . Ž .nent of � f and � is the jth component of � �� * � � �� * for some randomly chosenR� � j1 R �

Ž .� , R���T. Assumption C law of iterated logarithm ensures that for all t sufficiently large
1�2 ˆ � 1�2Ž . � � Ž .almost all t, a.a. t t � �� �� log log t� �1 a.s.-P, where � is the jth diagonal elementjt j j j j

ˆ � 1�2 1�2 �� � Ž . � �of G. Thus, � �� �� log log R� �R for all t	R, a.a. R, a.s.-P, so that � �jt j j j j1
�1 � 2 1 � 2Ž . 
 
� log log R � �R , a.a. R , a.s.-P , where � � m ax � . Thus, zz �Q , rj j 1

� �1�2 1�2� Ž . � 
 
 
 
� log log R� �R Ý XX , a.a. R, a.s.-P. By Assumption A.3, XX ���� for all j,Q, r Q, rj j1 j1
� 1�2 1�2Ž . 
 
 Ž .a.s.-P with r�4d, d�1 , so that ZZ �kk�� log log R� �R , a.a. R, a.s.-P.Q, r1

�	 � Ž . Ž � . 	��Because q �cn , we have � � �n exp �cn for �	n , ��0. Thenn n

n�1
1�2�1�r�Ž . Ž .1���n � �Ý n

��1

n	���1 n�1
1�2�1�r�Ž . Ž . � Ž .�� 1���n � 1���n n exp �cnÝ Ý

	����1 ��n

Ž 	�� . Ž 	�� . 1�2�1� r Ž Ž . � .� n �1 � n�n n exp �c 1�2�1�r n .

Ž 	�� . 1�2�1� r Ž Ž . � .For all n sufficiently large n�n n exp �c 1�2�1�r n �1, so that

n�1
1�2�1�r� 	��Ž . Ž .1���n � � �n .Ý n

��1

Collecting together the foregoing inequalities gives that for a.a. R, a.s.-P,

n
� � 2�1�2 2 2 1�2 	��Ž Ž .. Ž Ž . .Ž Ž . .var n ZZ �E ZZ � kk � � log log R� �R 1�4 2 �1 n .ÝQ t Q t

t�1
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Ž 	�� .Ž .By assumption, n �R log log R �0 as T��, ensuring that the variance on the left converges
to zero as was to be shown. It now follows that, a.s.-P,

n
� ��1�2 Ž Ž .. Ž .n ZZ �E ZZ �o 1 .Ý t Q t Q

t�1

�1 �2 n � �1�2 T � ˆŽ . Ž .But n Ý E ZZ �n Ý � f � �� * and the desired result follows ift�1 Q t t�R t�� t

T
��1�2 ˆŽ . Ž .n � f � �� * �o 1 .Ý t�� t P

t�R

Ž Ž . .By West 1996, proof of a , p. 1051 ,

T
��1�2 �1�2ˆŽ . � Ž .� Ž .n � f � �� * �FB n ÝH t �o 1 .Ý t�� t P

t�R

�1 �2 Ž . Ž . Ž Ž .Because n ÝH t �O 1 a consequence of West’s Lemma 4.1 a and the Chebyshev inequal-P
. Ž .ity , the desired result follows immediately when F�0, and the proof of ii.a is complete.

Ž .When F	0 we use stronger conditions on n and R to reach the desired conclusion for ii.b .
Elementary inequalities give

T
��1�2 ˆ� Ž . �n � f � �� *Ý t�� t

t�R

T
��1�2 ˆ� � � ��n � f � �� *Ý Ý j , t�� jt

t�R j

T
1�2��1�2 1�2� � Ž .�n � f � log log R� �RÝ Ý j , t�� j j

t�R j

T
1�2 1�2��1 � � Ž . Ž .� n � f � n�R log log R� ,Ý Ý j , t��ž /t�R j

where ��max � , and the second inequality follows by application of the law of the iteratedj j
logarithm. It follows from Assumption A.3 that

T
��1 � � Ž .n � f �O 1Ý Ý j , t�� P

t�R j

Ž Ž ..by application of the law of large numbers for mixing processes e.g., White 1984, Corollary 3.48 .
1�2 1�2Ž . Ž . Ž . Ž . Ž . Ž .The result now follows as n�R log log R �o 1 trivially ensures n�R log log R� �o 1 .

Q.E.D.

PROOF OF PROPOSITION 2.4: Immediate from Theorem 2.3 and the Continuous Mapping Theo-
rem. Q.E.D.

PROOF OF PROPOSITION 2.5: By definition

1�2 1�2 1�2� � � �P V �n c �P max n f �n c .l k�1, . . . , l k

But

1�2 1�2 1�2 1�2� � � �P max n f �n c 	P n f �n ck� 1, . . . , l k 1

� �1�2 1�2� Ž Ž .. Ž Ž .. ��P n f �E f �� �n c�E f �� ,1 1 11 1 11
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where � is the 1, 1 element of � . Hence11

1�2� � Ž Ž .. � � � Ž . �P V �n c 	 1�� z �sup P Z �z �� z ,l n z n

� �1�2 1�2� Ž .� Ž Ž ..where z �n c�E f �� �0 and Z �n f �E f �� . As in the proof of Propositionn 1 11 n 1 1 11
Ž . � � � Ž . �2.1, we can choose T sufficiently large that � z ���2 as well as sup P Z �z �� z ���2, son z n

1�2� �that for all T sufficiently large P V �n c 	1�� . Q.E.D.l

l l�1 Ž . Ž Ž . Ž . Ž ..PROOF OF COROLLARY 2.6: Let g:� U�� be defined as g h � g h , g h , . . . , g h �k� 0 0 1 l
Ž . Ž . Ž .for h , . . . , h �U. Let h be the l�1 m�1 vector h� h , h , . . . , h � and let E h* �0 l 0 1 l

Ž Ž � . Ž � . Ž � ..E h , E h , . . . , E h �. A mean value expansion gives0 1 l

1�2 1�2Ž Ž . Ž Ž ... Ž Ž ..n g h �g E h* �Dg n h�E h*¨
1�2 1�2Ž Ž .. Ž . Ž Ž ..�Dg* n h�E h* � Dg�Dg* n h�E h* ,¨

Ž . Ž .where Dg is the l�1 �m l�1 Jacobian matrix structured such that we obtain¨
� �1�2 1�2Ž Ž . Ž Ž ... Ž Ž ..n g h �g E h �Dg n h �E h¨k k k k

�Ž .in the k th row, where Dg is evaluated at a mean value lying between h and E h . Dg* is¨ k k
Ž .structured analogously but with elements evaluated at the appropriate components of E h* .

�1�2Ž Ž .. Ž .It follows from Theorem 4.1 of West that n h�E h is O 1 , while this and the assumedk P
Ž .continuity of Dg ensures that Dg�Dg*�o 1 . Consequently,¨ P

1�2 1�2Ž Ž . Ž Ž ... Ž Ž .. Ž .n g h �g E h* �Dg* n h�E h �o 1 .P

Ž Ž .. Ž .It follows from the asymptotic equivalence lemma e.g. Lemma 4.7 of White 1984 and e.g.
Ž .Corollary 4.24 of White 1984 that

1�2 Ž Ž . Ž Ž ... Ž .n g h �g E h* �N 0, Dg*� Dg*� ,

1�2Ž Ž .. Ž . Ž .given that n h�E h* �N 0, � as ensured by West 1996, Theorem 4.1 .
The results now follow by arguments identical to those for Proposition 2.2.

PROOF OF COROLLARY 2.7: Identical to that of Corollary 2.4, mutatis mutandis. Q.E.D.

PROOF OF COROLLARY 2.8: Identical to that of Proposition 2.5, mutatis mutandis. Q.E.D.
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